時間 : 2024-12-20
半導體是指一種導電性可受控制,范圍可從絕緣體至導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。很多人一直有疑問,半導體材料有哪些? 半導體材料有哪些實際運用?今天小編精心搜集整理了相關資料,來專門解答大家關于半導體材料的疑問,下面一起來看一下吧!
一、半導體材料有哪些?
常用的半導體材料分為元素半導體和化合物半導體。元素半導體是由單一元素制成的半導體材料。主要有硅、鍺、硒等,以硅、鍺應用最廣。化合物半導體分為二元系、三元系、多元系和有機化合物半導體。二元系化合物半導體有Ⅲ-Ⅴ族(如砷化鎵、磷化鎵、磷化銦等)、Ⅱ-Ⅵ族(如硫化鎘、硒化鎘、碲化鋅、硫化鋅等)、Ⅳ-Ⅵ族(如硫化鉛、硒化鉛等)、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半導體主要為三元和多元固溶體,如鎵鋁砷固溶體、鎵鍺砷磷固溶體等。有機化合物半導體有萘、蒽、聚丙烯腈等,還處于研究階段。
此外,還有非晶態和液態半導體材料,這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。
二、半導體材料主要種類
半導體材料可按化學組成來分,再將結構與性能比較特殊的非晶態與液態半導體單獨列為一類。按照這樣分類方法可將半導體材料分為元素半導體、無機化合物半導體、有機化合物半導體和非晶態與液態半導體。
1、元素半導體:在元素周期表的ⅢA族至ⅦA族分布著11種具有半導性半導體材料的元素,下表的黑框中即這11種元素半導體,其中C表示金剛石。C、P、Se具有絕緣體與半導體兩種形態;B、Si、Ge、Te具有半導性;Sn、As、Sb具有半導體與金屬兩種形態。
2、無機化合物半導體:分二元系、三元系、四元系等。 二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有閃鋅礦的結構。
3、有機化合物半導體
4、非晶態與液態半導體
三、半導體材料實際運用
制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。
半導體材料所有的半導體材料都需要對原料進行提純,要求的純度在6個“9”以上,最高達11個“9”以上。提純的方法分兩大類,一類是不改變材料的化學組成進行提純,稱為物理提純;另一類是把元素先變成化合物進行提純,再將提純后的化合物還原成元素,稱為化學提純。物理提純的方法有真空蒸發、區域精制、拉晶提純等,使用最多的是區域精制。化學提純的主要方法有電解、絡合、萃取、精餾等,使用最多的是精餾。由于每一種方法都有一定的局限性,因此常使用幾種提純方法相結合的工藝流程以獲得合格的材料。
絕大多數半導體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的半導體單晶都是用熔體生長法制成的。直拉法應用最廣,80%的硅單晶、大部分鍺單晶和銻化銦單晶是用此法生產的,其中硅單晶的最大直徑已達300毫米。在熔體中通入磁場的直拉法稱為磁控拉晶法,用此法已生產出高均勻性硅單晶。在坩堝熔體表面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大的單晶。懸浮區熔法的熔體不與容器接觸,用此法生長高純硅單晶。水平區熔法用以生產鍺單晶。水平定向結晶法主要用于制備砷化鎵單晶,而垂直定向結晶法用于制備碲化鎘、砷化鎵。用各種方法生產的體單晶再經過晶體定向、滾磨、作參考面、切片、磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應的晶片。
以上就是小編今天給大家分享的半導體材料的有關信息,主要分析了半導體材料的種類和應用等問題,希望大家看后會有幫助!想要了解更多相關信息的話,大家就請繼續關注土巴兔學裝修吧!
上述內容來自用戶自行上傳或互聯網,如有版權問題,請聯系zxcq@corp.to8to.com 。
發表評論